organic compounds

5107 independent reflections

4268 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

T = 173 (2) K 0.38 × 0.27 × 0.01 mm

 $R_{\rm int} = 0.041$

refinement $\Delta \rho_{\text{max}} = 0.51 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Desipraminium picrate

M. T. Swamy,^a M. A. Ashok,^b H. S. Yathirajan,^b B. Narayana^c and Michael Bolte^d*

^aDepartment of Chemistry, Sambhram Institute of Technology, Bangalore 560 097, India, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^dInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 15 November 2007; accepted 22 November 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.125; data-to-parameter ratio = 15.3.

In the title compound, $C_{18}H_{23}N_2^+ \cdot C_6H_2N_3O_7^-$, the sevenmembered ring of the cation adopts a boat conformation and the two aromatic rings form a dihedral angle of 52.79 (6)°. The anions and cations are connected *via* N-H···O hydrogen bonds.

Related literature

For related literature, see: Ahmed *et al.* (2002); Cohen *et al.* (1990); Cremer & Pople (1975); Eriksoo & Rohte (1970); Ware (1987); Yathirajan *et al.* (2007).

b = 6.7952 (3) Å

 $\beta = 113.542 \ (4)^{\circ}$

V = 4745.5 (4) Å³

c = 24.3100 (13) Å

Experimental

Crystal data	
$C_{18}H_{23}N_2^+ \cdot C_6H_2N_3O_7^-$	
$M_r = 495.49$	
Monoclinic, $C2/c$	
a = 31.3356 (17) Å	

Z = 8Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

Data collection

Stoe IPDSII two-circle diffractometer Absorption correction: none 20306 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.125$ S = 1.045107 reflections 334 parameters

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2C\cdots O31$ $N2-H2C\cdots O32$ $N2-H2D\cdots O31^{i}$ $N2-H2D\cdots O37^{i}$	0.90 (2) 0.90 (2) 0.92 (2) 0.92 (2)	1.89 (2) 2.34 (2) 2.06 (2) 2.38 (2)	2.7662 (16) 2.8580 (18) 2.8202 (15) 3.1873 (18)	164 (2) 117 (1) 139 (2) 148 (2)

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

MTS thanks Sambhram Institute of Technology for use of the research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2047).

References

Ahmed, S. A., Silwadi, M. F. & Khatoon, B. A. (2002). J. Pharm. Biomed. Anal. 28, 501–507.

Cohen, M. D., Finberg, J., Dibner-Dunlap, M., Yuih, S. N. & Thames, M. D. (1990). Am. J. Physiol. Regul. Integr. Comp. Physiol. 258, 876–882.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Eriksoo, E. & Rohte, O. (1970). Arzneimittelforschung, 20, 1561–1569.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Ware, M. R. (1987). South. Med. J. 80, 1410-1415.

Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, 01792–01794.

Acta Cryst. (2007). E63, o4919 [doi:10.1107/S1600536807062393]

Desipraminium picrate

M. T. Swamy, M. A. Ashok, H. S. Yathirajan, B. Narayana and M. Bolte

Comment

Desipramine, 10,11-dihydro-5-[3-(methylamino)propyl]-5*H*-dibenz[b,f]azepine, is a tricyclic antidepressant (TCA) that inhibits the reuptake of norepinephrine. It is an active metabolite of imipramine. Along with other tricyclics, it has found use in treating neuropathic pain (Eriksoo & Rohte, 1970). It is one of the most potent and selective medications in this respect (Ware, 1987). The effect of desipramine hydrochloride on peripheral sympathetic nerve activity is reported (Cohen *et al.*, 1990). Desipramine hydrochloride is proposed as a new reagent for detection of microamounts of blood in urine (Ahmed *et al.*, 2002).

In continuation of our work on picrates of some pharmaceutical compounds (Yathirajan *et al.*, 2007) and in view of the importance of desipramine, the paper reports the crystal structure of the title compound.

Geometric parameters of the title compound, are in the usual ranges. The seven-membered ring of the cation adopts a boat conformation with puckering parameters: $q_2 = 0.7942$ (14) Å, $q_3 = 0.3246$ (15) Å, $\phi_2 = 142.88$ (11)°, $\phi_3 = 238.4$ (3)° (Cremer & Pople, 1975) and the dihedral angle between the two aromatic rings is 52.79 (6)°. The anions and the cations are connected *via* N—H···O hydrogen bonds.

Experimental

Desipramine hydrochloride (3.03 g, 0.01 mol) was dissolved in 20 ml of water. Picric acid (2.29 g, 0.01 mol) was dissolved in 30 ml of water. Both the solutions were mixed and stirred for few minutes. The formed complex was filtered, dried and crystals were obtained by slow evaporation of the ethanolic solution (m. p.: 431-435 K).

Refinement

H atoms were found in a difference map, but those bonded to C were geometrically positioned and included in the refinements with fixed individual displacement parameters $[U(H) = 1.2 U_{eq}(C) \text{ or } U(H) = 1.5 U_{eq}(C_{methyl})]$ using a riding model with C_{aromatic}—H = 0.95 Å, C_{methylene}—H = 0.99Å and C_{methyl}—H = 0.98 Å. The methyl group was allowed to rotate but not to tip. The amino H atoms were freely refined.

Figures

Fig. 1. Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level. The hydrogen bonds are shown as dashed lines.

Desipraminium picrate

Crystal data

$C_{18}H_{23}N_2^{+}\!\cdot\!C_6H_2N_3O_7^{-}$	$F_{000} = 2080$
$M_r = 495.49$	$D_{\rm x} = 1.387 {\rm ~Mg~m}^{-3}$
Monoclinic, $C2/c$	Melting point: 431 - 435 K
Hall symbol: -C 2yc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 31.3356 (17) Å	Cell parameters from 20595 reflections
b = 6.7952 (3) Å	$\theta = 2.6 - 27.1^{\circ}$
c = 24.3100 (13) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 113.542 \ (4)^{\circ}$	T = 173 (2) K
$V = 4745.5 (4) \text{ Å}^3$	Plate, yellow
Z = 8	$0.38 \times 0.27 \times 0.01 \text{ mm}$

Data collection

Stoe IPDSII two-circle diffractometer	4268 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.041$
Monochromator: graphite	$\theta_{\text{max}} = 26.9^{\circ}$
T = 173(2) K	$\theta_{\min} = 2.7^{\circ}$
ω scans	$h = -39 \rightarrow 39$
Absorption correction: none	$k = -7 \rightarrow 8$
20306 measured reflections	$l = -30 \rightarrow 30$
5107 independent reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.125$ Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0724P)^2 + 2.222P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$
5107 reflections	$\Delta \rho_{max} = 0.51 \text{ e } \text{\AA}^{-3}$
334 parameters	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
man a state of a state of the state of	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Experimental. Mol. Formula: $[C_{18}H_{23}N_2]^+[C_6H_2N_3O_7]^-$. Composition: Found (Calculated): C: 58.11 (58.18); H: 5.02 (5.09); N: 14.18 (14.13).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and	l isotropic or e	equivalent isotrop	pic displacement	parameters (A	(4^{2})
		, , ,	1	1	

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.19958 (4)	0.69793 (17)	0.33576 (5)	0.0274 (2)
C1	0.16257 (4)	0.8250 (2)	0.29473 (6)	0.0307 (3)
H1A	0.1661	0.8353	0.2561	0.037*
H1B	0.1659	0.9587	0.3121	0.037*
C2	0.11411 (4)	0.7457 (2)	0.28317 (6)	0.0306 (3)
H2A	0.1100	0.7406	0.3215	0.037*
H2B	0.0903	0.8362	0.2558	0.037*
C3	0.10693 (4)	0.5419 (2)	0.25562 (6)	0.0282 (3)
H3A	0.1116	0.5462	0.2177	0.034*
H3B	0.1302	0.4504	0.2834	0.034*
N2	0.05907 (4)	0.46825 (18)	0.24327 (5)	0.0279 (2)
H2C	0.0533 (6)	0.476 (3)	0.2768 (8)	0.039 (4)*
H2D	0.0378 (6)	0.546 (3)	0.2147 (8)	0.038 (4)*
C4	0.05117 (5)	0.2612 (2)	0.22127 (7)	0.0358 (3)
H4A	0.0552	0.2517	0.1834	0.054*
H4B	0.0195	0.2210	0.2148	0.054*
H4C	0.0736	0.1746	0.2512	0.054*
C11	0.24440 (4)	0.7099 (2)	0.33351 (5)	0.0270 (3)
C12	0.27825 (4)	0.5601 (2)	0.35688 (6)	0.0284 (3)
C13	0.32069 (5)	0.5830 (2)	0.35128 (7)	0.0365 (3)
H13	0.3438	0.4844	0.3677	0.044*
C14	0.33045 (5)	0.7425 (3)	0.32298 (8)	0.0428 (4)
H14	0.3596	0.7526	0.3197	0.051*
C15	0.29706 (5)	0.8871 (3)	0.29952 (7)	0.0410 (4)

H15	0.3030	0.9970	0.2795	0.049*
C16	0.25482 (5)	0.8717 (2)	0.30518 (6)	0.0333 (3)
H16	0.2324	0.9734	0.2895	0.040*
C17	0.27325 (5)	0.3698 (2)	0.38639 (6)	0.0323 (3)
H17A	0.2937	0.3779	0.4296	0.039*
H17B	0.2851	0.2612	0.3692	0.039*
C21	0.19701 (4)	0.6516 (2)	0.39189 (6)	0.0276 (3)
C22	0.20698 (4)	0.4590 (2)	0.41360 (6)	0.0297 (3)
C23	0.20271 (5)	0.4103 (2)	0.46694 (6)	0.0371 (3)
H23	0.2092	0.2797	0.4819	0.045*
C24	0.18910 (5)	0.5491 (3)	0.49853 (7)	0.0415 (4)
H24	0.1867	0.5141	0.5350	0.050*
C25	0.17903 (5)	0.7386 (3)	0.47653 (7)	0.0395 (3)
H25	0.1696	0.8342	0.4979	0.047*
C26	0.18265 (5)	0.7901 (2)	0.42310 (6)	0.0332 (3)
H26	0.1753	0.9202	0.4079	0.040*
C27	0.22439 (5)	0.3143 (2)	0.38077 (6)	0.0321 (3)
H27A	0.2029	0.3117	0.3379	0.039*
H27B	0.2250	0.1809	0.3975	0.039*
O31	0.03288 (3)	0.55588 (17)	0.33651 (4)	0.0368 (2)
O32	0.09643 (6)	0.2663 (2)	0.35570 (5)	0.0636 (4)
O33	0.10213 (8)	0.0736 (3)	0.42713 (9)	0.0966 (7)
O34	0.10268 (6)	0.3341 (2)	0.60773 (6)	0.0680 (4)
O35	0.05950 (5)	0.5845 (2)	0.60442 (5)	0.0610 (4)
O36	0.00360 (6)	0.9942 (2)	0.42802 (6)	0.0713 (5)
O37	-0.02365 (5)	0.8368 (2)	0.34441 (5)	0.0601 (4)
N31	0.09068 (5)	0.2297 (2)	0.40142 (6)	0.0425 (3)
N32	0.07745 (5)	0.4708 (2)	0.58073 (6)	0.0478 (4)
N33	0.00219 (5)	0.8483 (2)	0.39776 (6)	0.0432 (3)
C31	0.04474 (4)	0.5401 (2)	0.39216 (6)	0.0292 (3)
C32	0.07263 (5)	0.3815 (2)	0.42855 (6)	0.0321 (3)
C33	0.08277 (5)	0.3588 (2)	0.48851 (6)	0.0367 (3)
H33	0.1000	0.2479	0.5097	0.044*
C34	0.06763 (5)	0.4987 (3)	0.51768 (6)	0.0375 (3)
C35	0.04210 (5)	0.6613 (2)	0.48778 (7)	0.0381 (3)
H35	0.0325	0.7583	0.5087	0.046*
C36	0.03096 (5)	0.6790 (2)	0.42741 (6)	0.0338 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0255 (5)	0.0265 (6)	0.0293 (5)	-0.0007 (4)	0.0099 (4)	0.0052 (4)
C1	0.0287 (6)	0.0257 (7)	0.0332 (6)	-0.0006 (5)	0.0077 (5)	0.0038 (5)
C2	0.0266 (6)	0.0268 (7)	0.0343 (6)	0.0021 (5)	0.0078 (5)	-0.0008 (5)
C3	0.0243 (6)	0.0300 (7)	0.0304 (6)	-0.0008 (5)	0.0110 (5)	-0.0024 (5)
N2	0.0258 (5)	0.0297 (6)	0.0278 (5)	-0.0015 (4)	0.0103 (4)	-0.0019 (4)
C4	0.0409 (7)	0.0314 (7)	0.0380 (7)	-0.0079 (6)	0.0186 (6)	-0.0073 (6)
C11	0.0270 (6)	0.0265 (6)	0.0259 (6)	-0.0045 (5)	0.0089 (5)	-0.0014 (5)

C12	0.0287 (6)	0.0281 (7)	0.0279 (6)	-0.0029 (5)	0.0106 (5)	-0.0011 (5)
C13	0.0299 (7)	0.0395 (8)	0.0404 (7)	0.0013 (6)	0.0144 (6)	0.0037 (6)
C14	0.0327 (7)	0.0506 (10)	0.0499 (9)	-0.0043 (7)	0.0213 (7)	0.0064 (7)
C15	0.0392 (8)	0.0420 (9)	0.0448 (8)	-0.0076 (7)	0.0200 (6)	0.0090 (7)
C16	0.0330 (7)	0.0309 (7)	0.0347 (7)	-0.0029 (6)	0.0122 (5)	0.0045 (6)
C17	0.0321 (6)	0.0266 (7)	0.0381 (7)	0.0024 (5)	0.0139 (5)	0.0039 (5)
C21	0.0227 (6)	0.0303 (7)	0.0280 (6)	-0.0043 (5)	0.0084 (5)	0.0010 (5)
C22	0.0226 (6)	0.0319 (7)	0.0325 (6)	-0.0031 (5)	0.0087 (5)	0.0049 (5)
C23	0.0283 (6)	0.0448 (9)	0.0372 (7)	0.0023 (6)	0.0119 (6)	0.0138 (6)
C24	0.0318 (7)	0.0612 (11)	0.0322 (7)	0.0024 (7)	0.0136 (6)	0.0102 (7)
C25	0.0335 (7)	0.0504 (9)	0.0357 (7)	-0.0005 (6)	0.0151 (6)	-0.0050 (6)
C26	0.0299 (6)	0.0322 (7)	0.0372 (7)	-0.0026 (5)	0.0130 (5)	-0.0012 (6)
C27	0.0320 (7)	0.0256 (7)	0.0365 (7)	-0.0031 (5)	0.0112 (5)	0.0039 (5)
O31	0.0328 (5)	0.0484 (6)	0.0290 (5)	0.0081 (4)	0.0121 (4)	0.0044 (4)
O32	0.0868 (10)	0.0726 (10)	0.0390 (6)	0.0363 (8)	0.0332 (7)	0.0103 (6)
O33	0.1541 (18)	0.0715 (11)	0.1071 (13)	0.0735 (12)	0.0972 (14)	0.0479 (10)
O34	0.0879 (10)	0.0748 (10)	0.0363 (6)	0.0239 (8)	0.0193 (6)	0.0147 (6)
O35	0.0617 (8)	0.0845 (10)	0.0341 (6)	0.0097 (7)	0.0164 (6)	-0.0104 (6)
O36	0.0940 (11)	0.0473 (8)	0.0601 (8)	0.0245 (8)	0.0176 (8)	-0.0128 (7)
O37	0.0706 (8)	0.0502 (8)	0.0416 (6)	0.0220 (6)	0.0035 (6)	0.0007 (5)
N31	0.0410 (7)	0.0471 (8)	0.0428 (7)	0.0167 (6)	0.0203 (6)	0.0095 (6)
N32	0.0470 (8)	0.0627 (10)	0.0300 (6)	0.0009 (7)	0.0114 (6)	-0.0016 (6)
N33	0.0478 (7)	0.0355 (7)	0.0412 (7)	0.0072 (6)	0.0126 (6)	-0.0023 (6)
C31	0.0231 (6)	0.0332 (7)	0.0300 (6)	-0.0017 (5)	0.0094 (5)	-0.0002 (5)
C32	0.0279 (6)	0.0374 (8)	0.0320 (6)	0.0029 (5)	0.0128 (5)	0.0008 (6)
C33	0.0305 (7)	0.0436 (8)	0.0339 (7)	0.0040 (6)	0.0105 (5)	0.0076 (6)
C34	0.0342 (7)	0.0481 (9)	0.0272 (6)	-0.0012 (6)	0.0091 (5)	-0.0009 (6)
C35	0.0360 (7)	0.0415 (8)	0.0334 (7)	-0.0014 (6)	0.0104 (6)	-0.0084 (6)
C36	0.0314 (7)	0.0319 (7)	0.0337 (7)	0.0012 (5)	0.0084 (5)	-0.0016 (6)

Geometric parameters (Å, °)

N1—C11	1.4297 (16)	C21—C26	1.392 (2)
N1—C21	1.4335 (17)	C21—C22	1.399 (2)
N1—C1	1.4699 (16)	C22—C23	1.3955 (19)
C1—C2	1.5279 (18)	C22—C27	1.500 (2)
C1—H1A	0.9900	C23—C24	1.386 (2)
C1—H1B	0.9900	С23—Н23	0.9500
C2—C3	1.5156 (19)	C24—C25	1.382 (2)
C2—H2A	0.9900	C24—H24	0.9500
C2—H2B	0.9900	C25—C26	1.393 (2)
C3—N2	1.4933 (16)	С25—Н25	0.9500
С3—НЗА	0.9900	С26—Н26	0.9500
С3—НЗВ	0.9900	С27—Н27А	0.9900
N2—C4	1.4906 (18)	С27—Н27В	0.9900
N2—H2C	0.904 (19)	O31—C31	1.2564 (16)
N2—H2D	0.915 (19)	O32—N31	1.2203 (18)
C4—H4A	0.9800	O33—N31	1.211 (2)
C4—H4B	0.9800	O34—N32	1.227 (2)

C4—H4C	0.9800	O35—N32	1.226 (2)
C11—C16	1.4038 (19)	O36—N33	1.2245 (19)
C11—C12	1.4146 (19)	O37—N33	1.2267 (18)
C12—C13	1.3986 (19)	N31—C32	1.455 (2)
C12—C17	1.5171 (19)	N32—C34	1.4504 (19)
C13—C14	1.382 (2)	N33—C36	1.462 (2)
C13—H13	0.9500	C31—C32	1.446 (2)
C14—C15	1.381 (2)	C31—C36	1.452 (2)
C14—H14	0.9500	C32—C33	1.371 (2)
C15—C16	1.388 (2)	C33—C34	1.379 (2)
C15—H15	0.9500	С33—Н33	0.9500
C16—H16	0.9500	C34—C35	1.387 (2)
C17—C27	1.5292 (19)	C35—C36	1.371 (2)
C17—H17A	0.9900	С35—Н35	0.9500
С17—Н17В	0.9900		
C11—N1—C21	118.58 (10)	С12—С17—Н17В	108.0
C11—N1—C1	117.48 (10)	С27—С17—Н17В	108.0
C21—N1—C1	116.48 (11)	H17A—C17—H17B	107.2
N1—C1—C2	112.00 (11)	C26—C21—C22	119.94 (13)
N1—C1—H1A	109.2	C26—C21—N1	121.60 (12)
C2—C1—H1A	109.2	C22—C21—N1	118.38 (12)
N1—C1—H1B	109.2	C23—C22—C21	118.83 (14)
C2—C1—H1B	109.2	C23—C22—C27	121.97 (13)
H1A—C1—H1B	107.9	C21—C22—C27	119.12 (12)
C3—C2—C1	111.37 (11)	C24—C23—C22	121.23 (15)
C3—C2—H2A	109.4	C24—C23—H23	119.4
C1—C2—H2A	109.4	С22—С23—Н23	119.4
C3—C2—H2B	109.4	C25—C24—C23	119.52 (14)
C1—C2—H2B	109.4	C25—C24—H24	120.2
H2A—C2—H2B	108.0	C23—C24—H24	120.2
N2—C3—C2	110.79 (11)	C24—C25—C26	120.26 (15)
N2—C3—H3A	109.5	С24—С25—Н25	119.9
С2—С3—НЗА	109.5	С26—С25—Н25	119.9
N2—C3—H3B	109.5	C21—C26—C25	120.21 (14)
С2—С3—Н3В	109.5	C21—C26—H26	119.9
НЗА—СЗ—НЗВ	108.1	С25—С26—Н26	119.9
C4—N2—C3	113.46 (11)	C22—C27—C17	110.76 (11)
C4—N2—H2C	108.3 (12)	С22—С27—Н27А	109.5
C3—N2—H2C	110.3 (11)	С17—С27—Н27А	109.5
C4—N2—H2D	107.9 (11)	С22—С27—Н27В	109.5
C3—N2—H2D	109.0 (11)	С17—С27—Н27В	109.5
H2C—N2—H2D	107.8 (16)	H27A—C27—H27B	108.1
N2—C4—H4A	109.5	O33—N31—O32	121.83 (15)
N2—C4—H4B	109.5	O33—N31—C32	118.42 (14)
H4A—C4—H4B	109.5	O32—N31—C32	119.62 (14)
N2—C4—H4C	109.5	O35—N32—O34	122.98 (14)
H4A—C4—H4C	109.5	O35—N32—C34	118.08 (15)
H4B—C4—H4C	109.5	O34—N32—C34	118.94 (15)
C16—C11—C12	118.47 (12)	O36—N33—O37	122.47 (14)

C16-C11-N1	119.19 (12)	O36—N33—C36	118.27 (13)
C12—C11—N1	122.30 (12)	O37—N33—C36	119.21 (13)
C13—C12—C11	118.08 (12)	O31—C31—C32	124.70 (13)
C13—C12—C17	114.98 (12)	O31—C31—C36	123.38 (13)
C11—C12—C17	126.91 (12)	C32—C31—C36	111.91 (12)
C14—C13—C12	122.93 (14)	C33—C32—C31	124.14 (13)
C14—C13—H13	118.5	C33—C32—N31	115.80 (13)
C12-C13-H13	118.5	C31—C32—N31	120.04 (12)
C15—C14—C13	118.78 (14)	C32—C33—C34	119.20 (14)
C15-C14-H14	120.6	С32—С33—Н33	120.4
C13-C14-H14	120.6	С34—С33—Н33	120.4
C14—C15—C16	120.06 (14)	C33—C34—C35	121.66 (13)
C14—C15—H15	120.0	C33—C34—N32	118.82 (14)
С16—С15—Н15	120.0	C35—C34—N32	119.48 (14)
C15-C16-C11	121.67 (14)	C36—C35—C34	118.49 (14)
C15—C16—H16	119.2	С36—С35—Н35	120.8
С11—С16—Н16	119.2	С34—С35—Н35	120.8
C12—C17—C27	117.19 (11)	C35—C36—C31	124.50 (13)
С12—С17—Н17А	108.0	C35—C36—N33	116.07 (13)
С27—С17—Н17А	108.0	C31—C36—N33	119.41 (12)
C11—N1—C1—C2	157.46 (12)	C22—C21—C26—C25	1.2 (2)
C21—N1—C1—C2	-53.05 (15)	N1—C21—C26—C25	177.85 (12)
N1—C1—C2—C3	-59.70 (15)	C24—C25—C26—C21	-0.8 (2)
C1—C2—C3—N2	-178.70 (11)	C23—C22—C27—C17	-108.52 (14)
C2—C3—N2—C4	-174.77 (11)	C21—C22—C27—C17	68.09 (15)
C21—N1—C11—C16	-132.52 (13)	C12—C17—C27—C22	-65.78 (16)
C1—N1—C11—C16	16.31 (17)	O31—C31—C32—C33	-175.47 (14)
C21—N1—C11—C12	49.96 (17)	C36—C31—C32—C33	3.4 (2)
C1-N1-C11-C12	-161.21 (12)	O31—C31—C32—N31	2.6 (2)
C16-C11-C12-C13	0.94 (19)	C36-C31-C32-N31	-178.59 (13)
N1-C11-C12-C13	178.48 (12)	O33—N31—C32—C33	18.8 (2)
C16—C11—C12—C17	-176.99 (13)	O32—N31—C32—C33	-156.98 (16)
N1-C11-C12-C17	0.6 (2)	O33—N31—C32—C31	-159.42 (18)
C11—C12—C13—C14	-1.4 (2)	O32—N31—C32—C31	24.8 (2)
C17—C12—C13—C14	176.81 (14)	C31—C32—C33—C34	-3.1 (2)
C12—C13—C14—C15	0.5 (3)	N31—C32—C33—C34	178.74 (14)
C13-C14-C15-C16	0.7 (3)	C32—C33—C34—C35	0.5 (2)
C14—C15—C16—C11	-1.1 (2)	C32—C33—C34—N32	178.38 (14)
C12—C11—C16—C15	0.3 (2)	O35—N32—C34—C33	-172.16 (15)
N1-C11-C16-C15	-177.35 (13)	O34—N32—C34—C33	6.9 (2)
C13—C12—C17—C27	-166.15 (13)	O35—N32—C34—C35	5.8 (2)
C11—C12—C17—C27	11.8 (2)	O34—N32—C34—C35	-175.10 (16)
C11—N1—C21—C26	111.04 (14)	C33—C34—C35—C36	1.5 (2)
C1—N1—C21—C26	-38.11 (17)	N32—C34—C35—C36	-176.34 (14)
C11—N1—C21—C22	-72.31 (15)	C34—C35—C36—C31	-1.1 (2)
C1—N1—C21—C22	138.55 (12)	C34—C35—C36—N33	177.23 (14)
C26—C21—C22—C23	-0.66 (19)	O31—C31—C36—C35	177.65 (14)
N1—C21—C22—C23	-177.37 (11)	C32—C31—C36—C35	-1.2 (2)
C26—C21—C22—C27	-177.38 (12)	O31—C31—C36—N33	-0.6 (2)

N1—C21—C22—C27 C21—C22—C23—C24 C27—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25—C26	5.91 (17) -0.3 (2) 176.28 (13) 0.8 (2) -0.2 (2)	C32—C31—C36—N33 O36—N33—C36—C35 O37—N33—C36—C35 O36—N33—C36—C31 O37—N33—C36—C31		-179.48 (13) 25.7 (2) -151.61 (16) -155.92 (16) 26.8 (2)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H2C···O31	0.90 (2)	1.89 (2)	2.7662 (16)	164 (2)
N2—H2C…O32	0.90 (2)	2.34 (2)	2.8580 (18)	117 (1)
N2—H2D···O31 ⁱ	0.92 (2)	2.06 (2)	2.8202 (15)	139 (2)
N2—H2D····O37 ⁱ	0.92 (2)	2.38 (2)	3.1873 (18)	148 (2)
Symmetry codes: (i) $-x$, y , $-z+1/2$.				

Fig. 1